Gis Application In Landslide Hazard Analysis | a07eb01465b28eb494cfa638798e966e

Application of GIS to Landslide Hazard Mapping
Landslide Science for a Safer Geoenvironment
Geoinformatics and Modelling of Landslide Susceptibility and Risk
Web Usage Mining Techniques and Applications Across Industries
Geotechnical Engineering for Disaster Mitigation and Rehabilitation
Arc Hydro
Local Site Effects and Ground Failures
Geographical Information Systems in Assessing Natural Hazards
Geographical Information Systems (GIS) Applied to Landslide Hazard Mapping and Evaluation in North-East Wales
Laser Scanning Applications in Landslide Assessment
Sustainable Development Practices Using Geoinformatics
Landslide Hazards in Vermont
Landslide Hazard Modeling in Ventura and Santa Barbara Counties, California
Using Multi-tiered Geospatial Data Analysis
Designing a Methodology for Zonation of Runout Area of Landslides
Landslides And Their Control
Applications of Soft Computing
Landslides and Engineered Slopes. Experience, Theory and Practice
Glissement de Terrain : Evaluation Et Stabilisation
Landslides
Remote Sensing Techniques and GIS Applications in Earth and Environmental Studies
Techniques for Disaster Risk Management and Mitigation
Applications of Chaos and Nonlinear Dynamics in Science and Engineering - Vol. 2
Landslides: Evaluation and Stabilization
Glissement de Terrain: Evaluation et Stabilisation, Set of 2 Volumes
The Use of Historical Data in Natural Hazard Assessments
Quantitative Landslide Hazard and Risk Assessment Using GIS
Early Warning Systems for Natural Disaster Reduction
Landslide Hazard and Risk
Environmental Applications of Remote Sensing
Emergency and Disaster Management: Concepts,
Application of GIS to Landslide Hazard Mapping

The 25 papers collected together in this volume present comprehensive coverage of all major aspects of landslide risk assessment, including the risk assessment framework, and methods for estimating probability of landsliding vulnerability and risk.

Landslide Science for a Safer Geoenvironment

This volume contains peer-reviewed papers from the Third World Landslide Forum organized by the International Consortium on Landslides (ICL) in June 2014. The complete collection of papers from the Forum is published in three full-color volumes and one mono-color volume.

Geoinformatics and Modelling of Landslide Susceptibility and Risk
This Special Report is a greatly expanded edition of a previous report on landslides (Special Report 176, "Landslides: Analysis and Control") published in 1978. The new report, which has been designed with an even broader international scope, contains comprehensive, practical discussions of field investigations, laboratory testing, and stability analysis procedures and technologies; comprehensive references to the literature; and discussions of case studies, state-of-the-art techniques, and research directions. The report is presented in five sections: (1) Principles, Definitions, and Assessment; (2) Investigation; (3) Strength and Stability Analysis; (4) Mitigation; and (5) Special Cases and Materials.

Web Usage Mining Techniques and Applications Across Industries

Landslides are one of the main natural disasters, and the landslide hazard assessment has become a major concern for the mountain area development. Geographic Information Systems (GIS), with its excellent spatial data process ability, has attracted a great attention in natural disaster assessment. This book discusses, the GIS-based landslide hazard assessment, which is one of geotechnical engineering approaches based on the physical term, is considered as an acceptable method for analyzing the safety factor of the landslide and for mapping three-dimensionally and probabilistically landslide hazard. Combining the GIS grid-based data with four proposed column-based models of 3D slope stability analysis, correspondent GIS grid-based 3D deterministic models have been devised to calculate the safety factor of the slope. Based on the four GIS-based 3D slope stability analysis models, a GIS-based program, 3DSlopeGIS, has been developed to
implement the algorithm where the whole of the input data is in the same form as the GIS dataset. Using the GIS grid-based 3D deterministic model and taking the slope unit as the mapping unit, the 3D safety factor index and failure probability are used for mapping landslide hazard. The method has been applied to some case study on three-dimensionally and probabilistically mapping landslide hazard.

Geotechnical Engineering for Disaster Mitigation and Rehabilitation

Arc Hydro

The book includes a broad spectrum of perspectives from different scientific disciplines (both the natural and social sciences) as well as practical knowledge. It gives a new insight into the Carpathian mountain region.

Local Site Effects and Ground Failures

Landslides and Their Control provides information on slope stability; the origin of slope movements; and methods on how they are investigated, controlled, and prevented. The book covers topics such as soil and rock mechanics; the influence of ground water on landslides; as well as other factors that produce sliding movement. The book also includes the different types of landslides as well as examples from different territories; its investigation, interpretation of stability, and stability analysis; and corrective measures.
involved. The monograph is recommended for geologists who would like to know more about the nature of landslides and how they can be prevented, especially those who work in service for the government.

Geographical Information Systems in Assessing Natural Hazards

Geographical Information Systems (GIS) Applied to Landslide Hazard Mapping and Evaluation in North-East Wales

Landslides - Investigation and Monitoring offers a comprehensive overview of recent developments in the field of mass movements and landslide hazards. Chapter authors use in situ measurements, modeling, and remotely sensed data and methods to study landslides. This book provides a thorough overview of the latest efforts by international researchers on landslides and opens new possible research directions for further novel developments.

Laser Scanning Applications in Landslide Assessment

These volumes comprise the Proceedings of the Ninth International Symposium on Landslides, held in Rio de Janeiro, Brazil, from June 28 to July 2, 2004. Information on the latest developments in Landslide Studies is presented by invited lecture reports, specialized panel contributions and over two hundred and forty technical papers, grouped
in the following themes: - Mapping and geological models in landslide hazard assessment, - Advances in rock and mine slopes design, - Field instrumentation and laboratory investigations, - Pre-failure mechanics of landslides in soil and rock, - Mechanisms of slow active landslides, - Post-failure mechanics of landslides, - Stabilization methods and risk reduction measures. A wealth of the latest information on all aspects of landslide hazard, encompassing geological modelling and soil and rock mechanics, landslide processes, causes and effects, and damage avoidance and limitation strategies.

Sustainable Development Practices Using Geoinformatics

Landslides and Engineered Slopes. Experience, Theory and Practice contains the invited lectures and all papers presented at the 12th International Symposium on Landslides, (Naples, Italy, 12-19 June 2016). The book aims to emphasize the relationship between landslides and other natural hazards. Hence, three of the main sessions focus on Volcanic-induced landslides, Earthquake-induced landslides and Weather-induced landslides respectively, while the fourth main session deals with Human-induced landslides. Some papers presented in a special session devoted to "Subareal and submarine landslide processes and hazard" and in a “Young Session” complete the books. Landslides and Engineered Slopes. Experience, Theory and Practice underlines the importance of the classic approach of modern science, which moves from experience to theory, as the basic instrument to study landslides. Experience is the key to understand the natural phenomena focusing on all the factors that play a major role. Theory is the instrument to manage the data provided by experience following a mathematical approach; this allows not only to clarify the nature and the deep causes of phenomena but mostly, to predict
future and, if required, manage similar events. Practical benefits from the results of theory to protect people and man-made works. Landslides and Engineered Slopes. Experience, Theory and Practice is useful to scientists and practitioners working in the areas of rock and soil mechanics, geotechnical engineering, engineering geology and geology.

Landslide Hazards in Vermont

Landslide Risk Assessment

A comprehensive guide to managing and mitigating natural disasters Recent years have seen a surge in the number, frequency, and severity of natural disasters, with further increases expected as the climate continues to change. However, advanced computational and geospatial technologies have enabled the development of sophisticated early warning systems and techniques to predict, manage, and mitigate disasters. Techniques for Disaster Risk Management and Mitigation explores different approaches to forecasting disasters and provides guidance on mitigation and adaptation strategies. Volume highlights include: Review of current and emerging technologies for disaster prediction Different approaches to risk management and mitigation Strategies for implementing disaster plans and infrastructure improvements Guidance on integrating artificial intelligence with GIS and earth observation data Examination of the regional and global impacts of disasters under climate variability
Landslide Hazard Modeling in Ventura and Santa Barbara Counties, California Using Multi-tiered Geospatial Data Analysis

In a world of earthquakes, tsunamis, and terrorist attacks, emergency response plans are crucial to solving problems, overcoming challenges, and restoring and improving communities that have been affected by these catastrophic events. Although the necessity for quick and efficient aid is understood, researchers and professionals continue to strive for the best practices and methodologies to properly handle such significant events. Emergency and Disaster Management: Concepts, Methodologies, Tools, and Applications is an innovative reference source for the latest research on the theoretical and practical components of initiating crisis management and emergency response. Highlighting a range of topics such as preparedness and assessment, aid and relief, and the integration of smart technologies, this multi-volume book is designed for emergency professionals, policy makers, practitioners, academicians, and researchers interested in all aspects of disaster, crisis, and emergency studies.

Designing a Methodology for Zonation of Run-out Area of Landslides

Natural hazards such as earthquakes, landslides, floods, volcanic eruptions, tsunamis, and hurricanes cause environmental, economic as well as sociological problems worldwide. In recent years, greater availability of information and sensational media reports of natural hazard occurrence -and in particular in terms of property damage or loss of life caused by these hazards -resulted in an increase of hazard awareness at a societal level. This
increase in public awareness has often been misconstrued as an indication that natural hazards have been occurring more frequently with higher magnitudes in recent years/decades, thus causing more damage than in the past. It is still under debate, however, to which extent recent increases in damage can be related to changing frequencies of natural processes, or whether catastrophic events occur at similar rates as they always had. If the latter is the case, the reason for a greater damage can be related to dramatic population growth over the last century, with a substantial augmentation of population density in some regions. Indeed, the implications are more server in underdeveloped and developing countries, where urbanisation has increasingly occurred in hazard prone areas such as coastal zones, alluvial river plains and steep slopes, thus causing an increase in the exposure to natural hazards. Some groups of society in wealthy countries accept higher risks in order to live directly on top of a cliff or on a steep slope to enjoy panoramic views of the landscape.

Landslides And Their Control

Applications of Soft Computing

This volume presents select papers presented at the 7th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. The papers discuss advances in the fields of soil dynamics and geotechnical earthquake engineering. Some of the themes include ground response analysis & local site effect, seismic slope
stability & landslides, application of AI in geotechnical earthquake engineering, etc. A strong emphasis is placed on connecting academic research and field practice, with many examples, case studies, best practices, and discussions on performance based design. This volume will be of interest to researchers and practicing engineers alike.

Landslides and Engineered Slopes. Experience, Theory and Practice

This exciting new volume will provide a comprehensive overview of the applications of geoinformatics technology for engineers, scientists, and students to become more productive, more aware, and more responsive to global climate change issues and how to manage sustainable development of Earth's resources. Over the last few years, the stress on natural resources has increased enormously due to anthropogenic activities especially through urbanization and industrialization processes. Sustainable development while protecting the Earth's environment involves the best possible management of natural resources, subject to the availability of reliable, accurate and timely information on regional and global scales. There is an increasing demand for an interdisciplinary approach and sound knowledge on each specific resource, as well as on the ecological and socio-economic perspectives related to their use. Geoinformatics, including Remote Sensing (RS), Geographical Information System (GIS), and Global Positioning System (GPS), is a groundbreaking and advanced technology for acquiring information required for natural resource management and addressing the concerns related to sustainable development. It offers a powerful and proficient tool for mapping, monitoring, modeling, and management of natural resources. There is, however, a lack of studies in understanding the core science and research elements of geoinformatics, as well as larger
issues of scaling to use geoinformatics in sustainable development and management practices of natural resources. There is also a fundamental gap between the theoretical concepts and the operational use of these advance techniques. Sustainable Development Practices Using Geoinformatics, written by well-known academicians, experts and researchers provides answers to these problems, offering the engineer, scientist, or student the most thorough, comprehensive, and practical coverage of this subject available today, a must-have for any library.

Glissement de Terrain : Evaluation Et Stabilisation

Nowadays, the innovation in space technologies creates a new trend for the Earth observation and monitoring from space. This book contains high quality and compressive work on both microwave and optical remote sensing applications. This book is divided into five sections: (i) remote sensing for biomass estimation, (ii) remote sensing-based glacier studies, (iii) remote sensing for coastal and ocean applications, (iv) sewage leaks and environment disasters, and (v) remote sensing image processing. Each chapter offers an opportunity to expand the knowledge about various remote sensing techniques and persuade researchers to deliver new research novelty for environment studies.

Landslides

Population growth and sprawling urbanization have resulted in higher perturbations of susceptible landscapes and more people and infrastructure exposed to hazardous
landsides in southern California. This, in turn, has resulted in an increase in both frequency and magnitude of landslide disasters in the region. Landslides impact thousands of people and damage billions of dollars of infrastructure each year. Mitigation and response to these disasters can be difficult and expensive especially when reliable, high-resolution risk and hazard exposure maps are rarely available to local planners and managers at scales that can be efficiently utilized for local decision-making. Several methods for assessing landslide hazards have been proposed and implemented over the years. However, a portable, high-resolution method of assessing and visualizing landslide risk and hazard exposure remains elusive. This research provides a two-step method, enabled by geographic information systems (GIS) and multi-criteria quantitative analysis, to produce a high-resolution spatial analysis of both geophysical landslide risk and landslide hazard exposure for the built environment. Phase I of this study develops and deploys a GIS-based method for landslide risk assessment using selected geophysical attributes, including past landslide and wildfire experience, to model landslide risk within the study area of Ventura County and Santa Barbara County, California. Phase II leverages the high-resolution quantitative risk results from Phase I to develop a landslide hazard exposure model that illustrates the likelihood of landslides interacting with features of the built environment within the study area. The resulting hazard exposure model provides a reliable, efficient ranking of potential landslide hazard exposure for each building parcel within the study area based on the integrated geophysical risk model, the geomorphological attributes of the study area and the spatial density of the built environment. This research demonstrates that, by leveraging a multi-tiered modeling process that involved both primary and secondary data, Geoscientists and hazards managers can develop high-resolution landslide risk and hazard assessments
suitable for land-use and settlement planning at the local scale. In applying this approach, hazard exposure mapping can play a renewed role in assessing areas with high landslide hazards and helping mitigate the associated risks.

Remote Sensing Techniques and GIS Applications in Earth and Environmental Studies

This doctoral thesis presents a novel approach to landslide risk assessment that explores the various dimensions of landslide risk in an integrated perspective. The research approach introduced here is tailored for use with landslide databases and Geographic Information Systems (GIS). A landslide susceptibility model is at the heart of this new approach, enabling to identify and delineate areas at risk of landslides and to assess infrastructure exposure. Landslide risk is a pressing societal issue that is still poorly understood. Temporal landslide hazard is derived from landslide frequency statistics and a hydrological simulation approach to estimate triggering thresholds. These methods are integrated into a powerful toolset for cost modeling that uses historical data to compile, model, and extrapolate damage costs on different spatial scales over time. The combination of this toolset with techniques to analyze fiscal cost impacts supports integrated risk assessment by quantifying the economic relevance of landslide losses.

Techniques for Disaster Risk Management and Mitigation

A discussion of recent and historic landslides in Vermont, detailing hazards, processes,
and slop movement in numerous soil and rock types.

Applications of Chaos and Nonlinear Dynamics in Science and Engineering - Vol. 2

Landslides

Environmental information and systems play a major role in environmental decision making. As such, it is vital to understand the impact that they have on different aspects of sustainable environmental management, as well as to understand the opportunism they might present for further improvement. Environmental Information Systems: Concepts, Methodologies, Tools, and Applications is an innovative reference source containing the latest research on the use of information systems to track and organize environmental data for use in an overall environmental management system. Highlighting a range of topics such as environmental analysis, remote sensing, and geographic information science, this multi-volume book is designed for engineers, data scientists, practitioners, academicians, and researchers interested in all aspects of environmental information systems.

Landslides: Evaluation and Stabilization/Glissement de Terrain: Evaluation et Stabilisation, Set of 2 Volumes
This book discusses various statistical models and their implications for developing landslide susceptibility and risk zonation maps. It also presents a range of statistical techniques, i.e. bivariate and multivariate statistical models and machine learning models, as well as multi-criteria evaluation, pseudo-quantitative and probabilistic approaches. As such, it provides methods and techniques for RS & GIS-based models in spatial distribution for all those engaged in the preparation and development of projects, research, training courses and postgraduate studies. Further, the book offers a valuable resource for students using RS & GIS techniques in their studies.

The Use of Historical Data in Natural Hazard Assessments

Emerging technologies have enhanced the various uses of geographic information systems. This allows for more effective analysis of available data to optimize resources and promote sustainability. Remote Sensing Techniques and GIS Applications in Earth and Environmental Studies is a critical reference source for the latest research on innovative methods for analyzing geographic data and utilizing sensor technologies for environmental monitoring. Featuring extensive coverage across a range of relevant perspectives and topics, such as land use, geospatial analysis, image interpretation, and site-suitability analysis, this book is ideally designed for engineers, professionals, practitioners, upper-level students, and academics actively involved in the various areas of environmental sciences.

Quantitative Landslide Hazard and Risk Assessment Using GIS
Early Warning Systems for Natural Disaster Reduction

Landslide Hazard and Risk

WSC2008 Chair’s Welcome Message

Dear Colleague, The World Soft Computing (WSC) conference is an annual international online conference on applied and theoretical soft computing technology. This WSC 2008 is the thirteenth conference in this series and it has been a great success. We received a lot of excellent paper submissions which were peer-reviewed by an international team of experts. Only 60 papers out of 111 submissions were selected for online publication. This assured a high quality standard for this online conference. The corresponding online statistics are a proof of the great world-wide interest in the WSC 2008 conference. The conference website had a total of 33,367 different human user accesses from 43 countries with around 100 visitors every day. 151 people signed up to WSC to discuss their scientific disciplines in our chat rooms and the forum. Also audio and slide presentations allowed a detailed discussion of the papers. The submissions and discussions showed that there is a wide range of soft computing applications to date. The topics covered by the conference range from applied to theoretical aspects of fuzzy, neuro-fuzzy and rough sets over to neural networks to single and multi-objective optimisation. Contributions about particleswarmoptimisation, geneexpressionprogramming, clustering, classification, supportvectormachines, quantumevolutionandagentsystems have also been
received. One whole session was devoted to soft computing techniques in computer graphics, imaging, vision and signal processing.

Environmental Applications of Remote Sensing

Chaos and nonlinear dynamics initially developed as a new emergent field with its foundation in physics and applied mathematics. The highly generic, interdisciplinary quality of the insights gained in the last few decades has spawned myriad applications in almost all branches of science and technology—and even well beyond. Wherever the quantitative modeling and analysis of complex, nonlinear phenomena are required, chaos theory and its methods can play a key role. This second volume concentrates on reviewing further relevant, contemporary applications of chaotic nonlinear systems as they apply to the various cutting-edge branches of engineering. This encompasses, but is not limited to, topics such as the spread of epidemics; electronic circuits; chaos control in mechanical devices; secure communication; and digital watermarking. Featuring contributions from active and leading research groups, this collection is ideal both as a reference work and as a ‘recipe book’ full of tried and tested, successful engineering applications.

Emergency and Disaster Management: Concepts, Methodologies, Tools, and Applications

Web usage mining is defined as the application of data mining technologies to online usage patterns as a way to better understand and serve the needs of web-based
applications. Because the internet has become a central component in information sharing and commerce, having the ability to analyze user behavior on the web has become a critical component to a variety of industries. Web Usage Mining Techniques and Applications Across Industries addresses the systems and methodologies that enable organizations to predict web user behavior as a way to support website design and personalization of web-based services and commerce. Featuring perspectives from a variety of sectors, this publication is designed for use by IT specialists, business professionals, researchers, and graduate-level students interested in learning more about the latest concepts related to web-based information retrieval and mining.

Landslide Hazard Assessment in Muonglay, Vietnam Applying GIS and Remote Sensing

With the increasing need to take an holistic view of landslide hazard and risk, this book overviews the concept of risk research and addresses the sociological and psychological issues resulting from landslides. Its integrated approach offers understanding and ability for concerned organisations, landowners, land managers, insurance companies and researchers to develop risk management solutions. Global case studies illustrate a variety of integrated approaches, and a concluding section provides specifications and contexts for the next generation of process models.

Environmental Information Systems: Concepts, Methodologies, Tools, and Applications
This book presents landslide studies using the geographic information system (GIS), which includes not only the science of GIS and remote sensing, but also technical innovations, such as detailed light detection and ranging profiles, among others. To date most of the research on landslides has been found in journals on topography, geology, geotechnology, landslides, and GIS, and is limited to specific scientific aspects. Although journal articles on GIS using landslide studies are abundant, there are very few books on this topic. This book is designed to fill that gap and show how the latest GIS technology can contribute in terms of landslide studies. In a related development, the GIS Landslide Workshop was established in Japan 7 years ago in order to communicate and solve the scientific as well as technical problems of GIS analyses, such as how to use GIS software and its functions. The workshop has significantly contributed to progress in the field. Included among the chapters of this book are GIS using susceptibility mapping, analyses of deep-seated and shallow landslides, measuring and visualization of landslide distribution in relation to topography, geological facies and structures, rivers, land use, and infrastructures such as roads and streets. Filled with photographs, figures, and tables, this book is of great value to researchers in the fields of geography, geology, seismology, environment, remote sensing, and atmospheric research, as well as to students in these fields.

GIS Landslide

This book is related to various applications of laser scanning in landslide assessment. Landslide detection approaches, susceptibility, hazard, vulnerability assessment and
various modeling techniques are presented. Optimization of landslide conditioning parameters and use of heuristic, statistical, data mining approaches, their advantages and their relationship with landslide risk assessment are discussed in detail. The book contains scanning data in tropical forests; its indicators, assessment, modeling and implementation. Additionally, debris flow modeling and analysis including source of debris flow identification and rockfall hazard assessment are also presented.

Applications of GIS in Earthquake and Landslide Hazard Assessment

Landslide Hazard Assessment Using GIS

Application of GIS for Landslide Hazard and Risk Assessment, Kandy Area

Development of Techniques for Landslide Hazard Analysis Application Using GIS and Remote Sensing

The 16 contributions to Geographical Information Systems in Assessing Natural Hazards report on GIS investigations into landslides, floods, volcanic eruptions, earthquakes and groundwater pollution hazards. Current methods for predicting extreme events are critically discussed, the emphasis being on the intrinsic complexity of this type of...
operation, requiring many spatial data, long historical records and sound models of the physical processes involved. Within this context, the potentials and limitations of GIS are addressed in terms of data acquisition, spatial data structures and modelling for simulation of the causal phenomena. Geographic Information Systems in Assessing Natural Hazards will help investigators in both public and private institutions to evaluate the actual effectiveness of GIS in coping with natural disasters, and to develop new strategies for projects aimed at the assessment and mitigation of the effects of such catastrophic events.

Landslide Databases as Tools for Integrated Assessment of Landslide Risk

The Carpathians: Integrating Nature and Society Towards Sustainability

Written for a broad audience this book offers a comprehensive account of early warning systems for hydro meteorological disasters such as floods and storms, and for geological disasters such as earthquakes. One major theme is the increasingly important role in early warning systems played by the rapidly evolving fields of space and information
technology. The authors, all experts in their respective fields, offer a comprehensive and in-depth insight into the current and future perspectives for early warning systems. The text is aimed at decision-makers in the political arena, scientists, engineers and those responsible for public communication and dissemination of warnings.

Copyright code: a07eb01465b28eb494cfa638798e966e